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Abstract

This work is concerned with the long time dynamics of a class of abstract nonlinear
second order in time systems with damping. This class of systems describes nonlin-
ear dissipative elastic models with the nonlinear term produced by neo-Hookean type
stress-strain relationships. In our earlier paper it was shown that these systems give
rise to a weak dynamical system and that there exists a weak compact attractor. In
the present work, using a somewhat more detailed analysis based in part on the results
of H. T. Banks, D. 5. Gilliam and V. I. Shubov on the existence and uniqueness of
the weak solutions, we show that these systems generate a ”strong” dynamical system
also. More importantly, we are able to prove the existence of a compact ”"strong”
global attractor. Finally, we make several comments concerning the regularity of this
attractor, and present two examples.

1 Introduction

In this work we consider the following class of abstract nonlinear damped hyperbolic systems

evolving in a complex separable Hilbert space H (actually holding in the sense of a larger

space V* ):
wy + Ayw + Agw, + N g(Nw) = f(1) (1.1)
w(0) = o (1.2)
w(0) = ¢q (1.3)
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Here A;, A; and A are unbounded linear operators and ¢ is a continuous nonlinear operator
in H. The precise conditions on all these operators, the forcing term f(¢) and on the initial
data (1.2), (1.3) are given in the next section.

The global in time existence and uniqueness of the weak solution for the problem (1.1)-
(1.3) was shown in [BGS1, BGS2]. In this paper we continue the study of the long time
behavior of the weak solutions. In our previous work [P] we showed that the system (1.1)-
(1.3) generates a weak dynamical system. The advantage of using a weak dynamical system
(i.e. considering the dynamical system in the weak topology of the state space) was that
bounded trajectories are precompact which is an essential property to insure the existence
of an attractor. Once the existence of a weak dynamical system is shown, it is enough to
establish that the system is bounded and weak point dissipative to guarantee the existence
of a weak compact attractor. This idea was introduced and developed in several papers:
[Bal, Ba2, Da, Ha, SI] (see these papers for the relevant definitions and theorems). In the
present paper we establish two results. First we show that the problem (1.1)-(1.3) generates
a “strong” dynamical system which is continuous in the sense that the solution depends
continuously both on initial data and time. This does not follow from the earlier work since
now we consider the strong topology on the state space. Our second and main result is
the proof of existence of a compact global attractor. We achieve this result by showing
that trajectories of the system are asymptotically compact and the dynamical system is
bounded and point dissipative. The existence of the global attractor is established under
the assumptions made in [BGS2] and an additional technical assumption (see A12) below).
Finally, using the existence of a global Lyapunov function, we obtain that the global attractor
is the unstable set of the set of its fixed points.

We briefly mention here the origin of the problem (1.1)-(1.3) and refer to [BGS2] for
a more detailed discussion. In the case when the nonlinear operator ¢ = 0 the equation
(1.1) describes a linear dissipative elastic model with A; being the elastic operator and
A, being the dissipation operator. An extensive literature is devoted to the analysis of
such models (see e.g. [BIW, CT] and references therein). The nonlinear term in equation
(1.1) comes from a nonlinear constitutive law, i.e. from a neo-Hookean type stress-strain
relationship. This type of constitutive laws occur in a wide range of materials which are
of a great importance in modern smart material technology. Namely, the above mentioned
nonlinear stress-strain relationship takes place in polymer composites such as elastomers
filled with active elements. These materials are used in the development of both passive

and active vibration devices. The study of systems of the type (1.1)-(1.3) is important for



the development of computational methodologies for the identification and control of smart
material composites. As was already mentioned, in this work we are primarily interested in
the long-time behavior of these systems.

The present paper is organized in the following manner. In Section 2 we give a precise
formulation of all necessary assumptions imposed on the problem (1.1)-(1.3). Then we state
our main result: the existence of a compact global attractor. In Section 3 we prove the
continuity of the dynamical system. Sections 4 and 5 are devoted to the proof of the main
result - the existence of the attractor. Namely, in Section 4 we prove that our system is
point-dissipative, i.e. 1t has an absorbing ball. In Section 5 we show that our system is
asymptotically compact (see all necessary definitions below). Then by the following well-

known result, the existence of a global attractor is guaranteed [Lal:

Theorem 1.1 Lelt {V;, t > 0 ,X} be a bounded, poinl-dissipalive, asymptolically compact
dynamical system. Then there exvists a non-emply global attractor A, which is compact and

invariant. If X is connected then A is also connecled.

We collect here the definitions used in the statement of Theorem 1.1.

Definition 1.1 A dynamical system {V;, t > 0, X} is called bounded if for every bounded
B C X the set of positive semi-trajectories starting from B (denoted by v*(B)) is bounded
in X.

Definition 1.2 A dynamical system {V;, t > 0, X} is called point dissipative if there is
a bounded set A C X such that for any ¢ > 0 and x € X there exists a to(e,z) € IRY such

that Vi(z) € O.(A) for allt > ty. (O(A) denotes the e-neighborhood of A: the union of all
open balls of radius € centered at the points of A).

Definition 1.3 The dynamical system {V;,t > 0,V x H} is called asymptotically com-
pact if it possesses the following property: for every bounded set B such thal v*(B) is

bounded, each sequence of the form {V,, (z)}32,, where x;, € B and t; T oo, is precompact.

In Section 6 we show that our system has a global Lyapunov function which allows us to
make some conclusions concerning the structure of the attractor. Finally, we show three

examples where the existence of a global attractor is guaranteed.



2 Formulation of Problem

Throughout this work we use the notations and assumptions introduced in [BGS2]. Namely,
we assume that there is a sequence of separable Hilbert spaces V, Vy, H, V5, V* forming a

Gelfand quintuple [BIW, WI] satisfying

V=V, —H—=V; =V, (2.1)

where we assume that the embedding V < Vs, is dense and continuous with [|¢|lv, < ¢|l¢|lv
for ¢ € V and V3 — H is a dense compact embedding with ||| < é||¢|lv,. We denote by
(', )yyv, etc., the usual duality products [WI]. These duality products are the extensions
by continuity of the inner product in H, denoted by ( , ) throughout. The norm in H
will be denoted by || - || while those in V, V, etc. will carry an appropriate subscript. The
operators A; and A, are defined in terms of their sesquilinear forms o; : V x YV — C
and oy @ Vo x Vo — €. That is, Ay € LV, V*), Ay € L(V2,V5) and (Ajp,P)ysy =
o1(e, 1), (A2, vz v, = 020, 1))
Let L1 denote the space of functions w : [0, 7] — H such that
w € Cw([0,T],V2) N L=([0,T],V)
(W means weak continuity), and

wy € CW([Oa T]7 H) ﬂ LQ([Oa T]v VQ)?

where the time derivative w; is understood in the sense of distributions with values in a

Hilbert Space (see, e.g., [Li]). The space Lt is equipped with the norm

T 1/2
lwllzy = ess sup ([lw:(t)] + [[w(t)]lv) + (/0 I\wt(t)!\%2dt) : (2.2)

te[0,7]

Definition 2.1 We say that w € L7 is a weak solution of the problem (1.1) — (1.3) if it

satisfies the equation:

[ [— (10,(7), 12 (7)) + o1 (0(r), () + o2 (wn () () +
Hg(Wu(r) ,Nn<r>>] dr + (wi(t), (1)) =

= (e (O) + [ () 0()vzvadr, (23)

4



for any t € [0,T] and any n € L, as well as the initial condition

w(0) = po. (2.4)

Equivalently,

(wet, nyvey + o1(w,n) + oa(we, ) + (g(Nw), N'n) = (f.n)vsv, (2.5)
is salisfied for all n € L1 and for almost all t € [0,T].

In addition, we make the following assumptions (these assumptions are the same as
in [BGS2] except that in A6) f does not depend on ¢ and we introduce one additional
assumption A12) ).

A1) The form o is a Hermitian sesquilinear form: for ¢, ) € ¥
o1(p, ) = a1(, ). (2.6)
A2) The form oy is ¥ bounded: for ¢, € V
o1 (e, )| < allellvllellv. (2.7)
A3) The form oy is strictly coercive on V: for ¢ € V
Reoi(p,0) = o1(p, ) 2 killelly, k1> 0. (2.8)
A4) The form oy is bounded on Vs: for ¢, € Vy
o2, ¥)| < callellv, [[¢]]v.. (2.9)

A5) The real part of oy is coercive and is symmetric on Vy:

Re oy, 0) + dollell? > kallell}, k2 >0, >0 (2.10)
Reoa(p, ) = Reoa(, @), for any ¢, € Vs. (2.11)

A6) The forcing term f is time-independent, f € V5.



AT) The operator N satisfies
N € £Ve, M) with [Nl < VE [l (2.12)
and the range of A on V is dense in H.
Note that (2.12) and V < V, implies
N € LV, H) with [Ng]| < VElolly (2.13)
with k = &%k.

A8) The nonlinear function g : H — H is a continuous nonlinear mapping of real gradient
(or potential) type. This means that there exists a continuous Frechet-differentiable
nonlinear functional G : H — IR', whose Frechet derivative G/(p) € L(H, IR") at any
@ € H can be represented in the form

((g) = Relgl(p). ¥) for any ¥ € A (2.14)
We also require that there are constants Cy, Cy, C5 and £ > 0 such that
~ 57 (b = gl ~ O < Glg) < Gl + Cs, (215)
where & is from (2.13) and &, from (2.8).
A9) The nonlinear function g also satisfies

lg(e)ll < Cillgll +Ca ¢ €, (2.16)

for some constants (7, Ch.
An additional condition is necessary for uniqueness of solutions.

A10) For any ¢ € H the Frechet derivative of ¢ exists and satisfies
q'(¢) € LIH,H) with [|g'(¢)l ez < Cs. (2.17)
Al11l) We assume that for any u,v € L, the following inequality is satisfied for any ¢ € [0, T]:
[ { RelaWu) = (W o(r), Mu(r) ~ No(r)
ki kYN u(r) — NU(T)HZ} dt (2.18)

ta ((/Ot u(r) — U(T)H?dt)m) >0,

where a(£) > 0 is a continuous function in ¢ > 0 such that
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) a(0) =0,
ii) there exists a first derivative such that a’(0) = 0.

Note that (2.18) is satisfied if, for example,

Re(g(¢) = 9(¥), 0 =) + kik7 o —¢|* > 0 (2.19)

for any ¢,v¢ € H, where k and k; are the constants in (2.13) and (2.8).
E.g. it H = L*Q), Q C IR™, so that g : IR — IR, then a sufficient condition for (2.19)
is that ¢'(¢) > —1; for some 3 > 0.

A12) The embedding V — V; is compact.

Some of the considerations below do not use all the assumptions A1)-A12), but only a
part of them. In particular, A12) is necessary only to show the asymptotic compactness of
our system and, therefore, the existence of the attractor.

We mention that the main difficulty in dealing with the problem (1.1)-(1.3) comes from
the fact that the nonlinearity is very strong. The proof of the global in time existence
and uniqueness for this problem [BGS2] involves the Minty-Browder monotonicity method
[LSU, B, M, Li]. Due to the above mentioned difficulty our result does not follow from
well-known results on attractors for dissipative hyperbolic equations [La, H, Te].

Now we are in a position to state precisely the main result of this paper - the existence
of a global attractor. Our other results - the continuity of the dynamical system and the

regularity of the attractor are formulated in Section 3 and 6 respectively.

Theorem 2.1 Under condilions A1)-A12) the system (1.1)-(1.3) has a non-empty global

attractor A CV x H, which is compact, connected and invariant under the flow.

The proof of Theorem 2.1 is contained in a series of results in Section 3 through Section 5.

3 The Dynamical System

At this point we recall the following two earlier results, one from [BIW] and the other from
[BGS2].
In [BIW] the linear system

yie + Avy + Ay = h(1) (3.1)
y(0) = o (3.2)
y:(0) = ¢ (3.3)
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is investigated and the following result is obtained.

Theorem 3.1 Suppose that oy and o4 satisfy the conditions A1)-A5), h € L*([0,T],V;) and
wo €V, ©1 € H. Then (3.1)-(3.3) has a unique weak solution y satisfying

(yu, o)y v + 01y, ) + 02(ye, 0) = (hyp)vz v, (3.4)
y(0) = o (3.5)
y:(0) = ¢ (3.6)

for all o € V and for almost all t € [0,T] with
y € C([0,T],V), y: € C([0,T],H) N L*([0,T7], V)
and the map (o, ¢1,h) — y is continuous from V x H x L([0,T],V3) to
Z=1{2€C(0,T),V)| 2z € C([0,T],H) N L*((0,T), V2)}, (3.7)

where the norm in Z is given by

T 1/2
oz = sup (1=l + ol + ( [ e 0s)
te[0,T] 0

In [BGS2] it is shown that

Theorem 3.2 Under conditions A1)-A11) the system (1.1)-(1.3) has a unique weak solulion

w € L for every initial condition zo €V x H. The weak solution satisfies
1

(wet, nyvey + o1(w,n) + oa(we, n) + (g(Nw), Nn) = (f.n)vsv, (3.8)
for alln € L1 and for almost all t € [0,T].

Since the existence of global weak solutions of (1.1)-(1.3) is guaranteed by the above
Theorem 3.2 we can define the solution operator V; : V x H — V x H by

()=o)

where w is the weak solution of (1.1) corresponding to the initial condition ( :jo ) The
1

main result of this section is the following:



Theorem 3.3 [f conditions A1)-A11) are salisfied, then {Vi,t > 0,V x H} is a conlinuous
dynamical system in the sense that {V;,1 > 0} is a semigroup on V x H and the mapping

ViRt XYV xH—=VxH:

(£, 0, 01) = Vi ( o )

18 contlinuous.

Proof: It is clear that {V;,t > 0,V x H} is a semigroup since (by A6) f does not depend

on t. The continuity statement follows from the next two lemmas.

Lemma 3.1 The weak solution depends continuously on initial conditions, i.e. for a fixed

to > 0, Vi, s a continuous operator.

Proof of Lemma 3.1: Let w and @ be weak solutions of (2.1) with initial conditions g, @1
and @q , @1, respectively. Let u = w — W, g = po — @o and 1 = 1 — @1. Then from (3.8)

we have
(e, Mvev + o1(u, ) + 2w, ) + (g(Nw), Nn) — (g(Nw), N') = 0, (3.9)

for all p € L7 and for almost all ¢ € [0,7]. Let Ag = g(Nw) — g(Nw). Choosing n = u; we
formally (u; ¢ L1) get:

d (1 1
TGl + 3010w+ oafu, ) + (Ag. V) = 0, (3.0)

Taking the real part and integrating from 0 to ¢ we obtain:

t

lus(OI” + o1 (u(t), ut)) + 2Re/ 3 (ur(7), ur(7))dr =

0
¢
-2 Re/o (Ag, Nu,(7))d7 + |[u:(0)]|* + o1 (u(0), u(0)). (3.11)
Using the following estimate from [BGS2]:

‘/ (Ag, Nu,)

(where 6 > 0 arbitrary) and A3), A5) we have:

< Cy— k/ Ju( Hvdr—|—036k/ o (7113, dr,

—_ o~ t t
(O + Fallu()]5 + (22 — 2035k)/0 ()19, dr < 2%/0 lu(7)||*dr

/ () lI3dr + 1] + arllolly- (3.12)



Let § = &y where we choose &y such that ky — 25’3];:5 > 0 (such a &y exists since ky, 5’3, k> 0).
Then from (3.12) we have:

el * + ()5 < d1/0 (e (I + lu()B)dr + da ([l ]l* + l1oll})

(3.13)
max(2A ,@ 1
where d; = M and dy = M.
min(1, k1) min(1, k)
By Gronwall’s inequality:
eI + a1} < (dallnll® + llwoll3 ) . (3.14)
For t = ty we finally obtain:

lueCto) I* + llu(to)ls < da ([19all® + [19o][3) €. (3.15)

Since the last factor is clearly bounded for a fixed g € [0, T], we have the required continuity
result for a fixed ty. The fact that this result is actually valid for the weak solution can be
justified by considering the Galerkin approximates w (¢), w™ (¢) [BGS2], for which (3.15) is
certainly true, and then utilizing the convergences w™ () — w(t) weakly in V and w] (t) —
w;(t) weakly in ‘H, p)Y — g strongly in V, oI — ¢, strongly in ‘H, and using the weak
lower semicontinuity of norms in Hilbert space.

g

In the following lemma we prove that V; is continuous with respect to ¢ .

Lemma 3.2 For a fixed initial condition ( :jo ) eV xH, V ( :jo ) s conlinuous in {.
1 1

Proof of Lemma 3.2: From Theorem 3.2 we only know that

w € Cw([0,T],V) and w; € Cw ([0, T],H).

To show strong continuity we are going to use Theorem 3.1 recalled from [BIW] at the

beginning of this section. We consider the following two systems:

u(0) = u(0) = 0 (3.17)

10



and

vy + Ao + Ay =0 (3.18)
v(0) = ¢o (3.19)
v:(0) = 1 (3.20)

where w is the weak solution of (1.1)-(1.3). We have the following estimate for the right

hand side of (3.17):

T
I = Mg N0 oy = [ 1 = N g(Nw)

<2 [ (s

. T
b+ 2k [ llgWw)|fdr < 27 ]

2
V2 dr

be IV (g(Nw)}) dr

<2T|f

2

vy
. T . o~ -

+2k/0 (C2INw]? + 26, Co | Nw| + C2) dr

<2T|f

.. T
b+ 208 [ ()|, dr

o~ n T . a
+4k0102¢2/ () ||vdr + 2ETC2, (3.21)
0

which is finite since w € L®([0,7],V) N L*([0,T], V) (see [BGS2]). (Here k is the constant

from (2.12) so that [|[N*y|

v < \/i”cp”, since | V|| = [[NV*]|.) Tt follows that

h=[f—NgNw)e LX([0,T],V3),

so by Theorem 3.1 the unique weak solutions v and v of (3.16)-(3.17) and (3.18)-(3.20)
respectively, satisfy u,v € C([0,T],V), ut,v; € C([0,T],H). However, u + v — w is a weak

solution of (3.1)-(3.3) with A = ¢ = ¢1 = 0, so by uniqueness w = u + v. It follows that
w € C([0,T],V) and wy € C([0,T],H), so we have continuity in ¢. The proof of Theorem

3.3 is complete.

g

4 Point-dissipativity

In this section we prove the following theorem:
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Theorem 4.1 Under conditions Al1)-A11) the dynamical system {Vi,t > 0,V x H} is

bounded and point-dissipative.

Proof: We again proceed formally. Choosing n = w; in (3.8) and taking the real part we
obtain:

d (1 1
= {§Hwt”2 + §Jl(w, w) + G(./\/w)} + Re oz(wy, wy) = Re(f, wt>vg7v2 (4.1)

where we have used the fact that due to (2.14) we have

d
EG(./\/w) = Re(g(Nw), Nwy).

Using Ab) and multiplying by 2 we get:

d 1
7 {llwdl® + o1 (w, w) + 2G(Nw) } + 2ky|w |3, — 22o|rw]|* < 26][we][3, + 55115
(4.2)

Let | = @, where we choose ¢ such that k; — 6 > 0. Then by (2.1) we have that
2(ky — O)|Jwxll), = k2 ) HthZ Using this inequality in (4.2), multiplying by €' and then

integrating from 0 to t we obtain:

e~ O + [ € Cos(us),wls))ds + [ 2% (GAw(s))ds

<o [ el
— 26 Jo ‘

An integration by parts leads to:
e Nw (]* = llea |l + eor(w(t), w(t)) — o1 (w(0),w(0))

— /Ot lePoy (w(s), w(s))ds + 2" G(Nw(t)) — 2G(Nw(0)) —

1
3,;d5+zxo/0 €!%|[w, (5)]|2ds. (4.3)

t 1 rt t
/ el G(Nw(s))ds < —/ e\ £ 112 ds +2)\0/ e |[ws(s)||ds. (4.4)
0 26 Jo 2 0
This gives (using A3), A2) )
lw: (DI + kr[[w ()] + 2G(Nw(t)) <
e (Il + enllpoll} + 2G(Nw(0)))

H [ e wo(s), w(s))ds + 21 [ OGN w(s)ds

g [ €0

3eds +2) /0 =0 [, (5)||2ds. (4.5)

12



By A8), AT), A3) we obtain:

1 _
lien @) + k(I +2 | 557 (k= )k} - 1] <
t
e llenll® + eallgolly + 2Cakllgoll} +2C5] +ler [ (s ds

1
+21/ = Cokflw(s) )% + Cs)ds
0

1t5_
sl

1
2eds + 2o /0 =0, ()| 2ds. (4.6)

This gives

2* 1
HW®W+dm®%§e*K+@myH@f)/gwws
0

¢
+2C7 + L/O e ([lw(s) 15 + llws(s)]*)ds, (4.7)
where K = [||l¢1]]* + a1ll@olly + 2C2k||woll3) + 2C5], and L = max(le; + 21Cqk,2X).

115
Let ¢ = min(l,@), Ll = Lé_l, [(1 = I(é_l, [(2 = (2[03 + 26\)2) é_ll and ](3 = 201(::_1.

With these, using Gronwall’s inequality, we get:
[ + w3 < Kie™ + Ka(1 = e™) + Ks
+1, /0 "l [Kie™ 4 Ky(1— ™) 4 Ky efe e 7000 g
< Kie™" 4 Ky(1 — e7™) + K5

t 1
+ I / (e7(Ky — Ka) + (Kz + Ka)el0™9) e ds
0
P - - It EO - It [(2 + [(3 Ly
< ]Xle + [83 + [Xz(l — € ) + L16 l |]X1 — [X2|t€ + Ll <f) el (48)

Here only K1 = &7 (|1l + alleolly + 2C2k]|¢oll3 + 2C3) depends on the initial conditions

(K,, K3, Ly and [ are independent of them), so given any ¢ = io ) EVxHande>0
1

there exists a #o > 0 such that for ¢ > #,, we have |e”"K;| <

IS

€
and | Ky — Ky|te ™ < 57 80

K2-|-K3) Iy
— e .

This means that the dynamical system is point-dissipative, i.e. the ball of radius

[N + Nw@y < e+ Ks + Kz + Ly ( (4.9)

Ky, + K. 1

13



in V x H attracts every element of V x H. The estimate (4.8) also shows that the dynamical
system is bounded, i.e. if B C V x H is bounded, then V;(B) = UgepVi(?P) is bounded.
(Again to justify that these estimates are correct for the weak solution we have to consider

the Galerkin approximates as in Section 3.) g

5 The Global Attractor

Now we know that the dynamical system {V;,¢ > 0,V x H} is bounded and point-dissipative,
so from Theorem 1.1 the last thing we need to show is the asymptotic compactness in order
to complete the proof of our main result Theorem 2.1. To achieve this, we will use the
additional assumption A12) (i.e. the embedding V < V, is compact). Let us recall the

following theorem from [Lal:

Theorem 5.1 Suppose thal the dynamical system {Vi,t > 0, X} can be decomposed to a
sum Wi + Uy, where {Wy,t > 0, X} is a family of operators such that for any bounded sel
BCcX

IWe(B)l[x < ma(t)ma(]| Bl x) (5.1)

where my, : IRT — IRt are continuous for k = 1,2 and m;(t) — 0 as t — oo, ||Bl|x :=
sup,eg ||z||x. If the operators U, are such that the set Uy(B) is precompact for each bounded
set BC X and t >0, then {V;,t > 0, X} is asymptotically compact.

Proof of asymptotic compactness of V;: Consider systems (3.16)-(3.17) and (3.18)-
(3.20) again. Let W; and U; be the solution operator of (3.16)-(3.17) and (3.18)-(3.20),
respectively. First, we show that the set U;(B) is precompact for any bounded B C V x 'H

(we use an idea similar to one found in [Fal).

Lemma 5.1 For any bounded B CV x 'H and for any T' > 0 the set

Ur(B) = {(u(T),ut(T)ﬂ (u,us) s a weak solution of (3.16)-(3.17) for ( :ZO ) € B}
1
is precompact in YV x H.

Proof of Lemma 5.1: Let us fix a bounded BCV xHand T >0. Let ¥: L -V xH,

where

L= {w € C([0,7],Vs), : w the weak solution of (1.1) with ( ZUU(O) ) = ( 7o ) € B},
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be defined by: W(w) = (u(T'),u(T)), where u is the unique weak solution of (3.16)-(3.17)
with w on the right in (3.16).

First we show that ¥ is continuous.

Let (u,u:) be the weak solution of (3.16)-(3.17) corresponding to (w,w;) which is the weak

Yo

’ € B. We need to show that for every ¢ > 0,
1

(o)

where ( N ) is the weak solution of (3.16)-(3.17) corresponding to @ € L. If v and @ are
¢

as above then (z,z;) = (v — @, us — @) is a weak solution of

solution of (1.1) with initial conditions

there exists a 6 > 0 such that if

||w — IT)||O([07T]7V2) < 6, w € L then <e,

VxH

2+ Az + Ayzy = N g(Nw) — N g(Nw), (5.2)
z(0) = z(0) = 0. (5.3)
Note that (5.2)-(5.3) has the same form as (3.1)-(3.3) with A = N*g(Nw) — N*g(Nw) and
zero initial conditions. Thus, we can apply the continuous dependence result of Theorem 3.1

0 (5.2)-(5.3). In this case it gives that there exists a constant C' > 0 independent of & such
that

2llz < CllAl|r2o.mvs)

(since initial conditions are zero in (5.2)-(5.3)). Now
b= oty i o<1l o))

where Z is defined in (3.7). So to conclude that ¥ is continuous it is enough to show that

<

VxH

= [|=l=;
Z

2] z2(fo,1,vz) can be made arbitrarily small by choosing [[w — 1| ¢ o,1],v,) small enough. We

have:

I1Bllz2qor1vs) = IN"g(N®) = Ng(Nw)| 720,11, / IV (g(N) — g(Nw))|[y,dt

<k /0 oW ) — g(Nw)| s (5.4)

Since ¢ is continuous from H — H and

V(1) — Nw(®)]] = [NV ((t) — wd)]| < VElDE) — wt)lv, < VElD = ollogomn),
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we get that by choosing ||@ — w||¢(o,1],v,) small enough, the right side of (5.4) (and thereby
2]l z2(fo,1,vz) also) can be made as small as required. This proves that W is continuous.

Now note that W(L) = Ur(B), so to complete the proof of Lemma 5.1 it is enough to prove
that the set L is precompact in C'([0,T],V2). Using the same version of the Ascoli-Arzela
Theorem as in [BGS2, NS|, we show that

1) {w(t)| w € L} is precompact in V, for each ¢ € [0, 7],
2) L is equicontinuous.

Statement 1) follows from the fact that {w(¢)| w € L} is bounded in V and V — V; is
compact (this is the only place where this assumption is used). To show statement 2) we

note that:

oot + 20 w3, = 1| [ ),
t+AL t+A 9

< (" trtods) < a0 [ it i
C

< At—

< arp

by the apriori estimate in [BGS2]. This completes the proof of Lemma 5.1.

In order to complete the proof of asymptotic compactness the last thing to show is the
decay property of W;. Since v is the weak solution of (3.18)-(3.20) we can proceed formally
and multiply by v; to obtain:

dt 9 H tHQ Eﬁal(v U) ‘I‘ Re O'Q(Ut’vt) = O

Multiplying by 2 and using Ab) we get

d d k
EHWHZ + Eal(vvv) + 2%’\%”2 < 2 ||vel?.

Let [ = 2%2. Multiplying by e we obtain:

d )
eltaHthQ + ¢ Eal(’v v) 4 1e|[vd]|* < 2X0€" vy,

Integrating from 0 to ¢ we obtain

t d t
oDl = N0 + [ ¢ on(v,v)ds < 2h [ ellus(s)]1ds,
0 S 0

16



which after an integration by parts yields:
t
elloe()II* = llea I + e or(v(t), v(t)) = o1(v(0),v(0)) — /0 leo1 (v, v)ds

i
< zxo/ ¢%|vs(s) || ds.
0

{

Using condition A2), A3) and multiplying by e~" we get:

t
o2+ Falle(@)1 < e (lerl? + erligolld) + [ = (lo(s)l} + os(s)I) ds
where [y = max(leq,2Xg). Let m = min(1, k7). Using Gronwall’s inequality we have:
Nt NI < 1 2 2
[ @I + oIy < —e™ (leall” + erlleolly

1 t tl 1e—t)
- I l(s—t) —lIs 2 2 fs Lell .dﬁd
o [ 09 (el + callolly) € s

1 [ t 51
< ot 2 2 1 2 2 / —lt o tm d
< — (el +erlleollp) + - (lleall* + eallwolly) | e emds

IN

1 { 51
2 2\ -t 1

e — —t m
(H‘Pl” ‘|‘01H990Hv) € [m + m el ]

Now the right side of this inequality clearly goes to 0 as { — oo so we have the neces-
sary decay. Thus we conclude that the dynamical system is bounded, point-dissipative and

asymptotically compact, consequently it has a compact, invariant connected global attractor

ACV xH. 0

6 Regularity of the Attractor

Our next step is to describe the structure of the attractor. We have the following theorem:

Theorem 6.1 Lel £ denote the set of fized points of the dynamical system {V;,t > 0,V x H}
with the assumption that the real part of the form oy is strictly coercive (Ag = 0 in A5). Then

the attractor

A= M. (€)
where the unstable set M (&) of € is the sel

{u. €V x H and d(Viu.), €) === 0}.

17



Proof: The crucial step in the proof is that this dynamical system possesses a Lyapunov
function defined on the global attractor. (Actually, in this case the Lyapunov function is
global.) Once this is shown, the statement follows by a well-known theorem [Te] p.401. By
definition, a function F' is a global Lyapunov function for the semigroup {S;,¢ > 0, X'} if

F : X — IR is a continuous function such that

1. for any ® = ( :20 ) € X the function t — F (S;(®)) is nonincreasing,
1

2. if F/(S.®) = F(®) for some 7, then @ is a fixed point of the semigroup, i.e. S;(®) = @
for all ¢ > 0.

We claim that the function £ :V x H — IR,

1 1
F(u,0) = Slloll* + o1(u, u) + GNu) = Re(f, u)v;v,

is a Lyapunov function for the semigroup {V;,t > 0,V x H}. Statement 1. is clearly true,

since

d d (1 1
S (w,w) = 2 Sl + Sou(w,w) + GV w) — Re( w0y, |

< — Reoy(wy, wy) < —kQHUJtH%/Q <0,

which shows that F' is nonincreasing. Statement 2. follows from the fact that if F (V@) =
F (@), then ||w:(t)|lv, = 0 for a.e. ¢ € [0,7]. Since wy € C ([0,7], H) it follows that w;(t) = 0
for all ¢ € [0,7]. Then w must be constant on any time interval (from the semigroup

property), so ( :jo ) is a fixed point of V;.
1

Continuity of F' can be easily verified, so the attractor of the dynamical system is the unstable

set of the set of its fixed points. a

7 Examples

Example 7.1 We consider an m-dimensional, nonlinear damped membrane with fized bound-
ary.

Let Q C IR™ be a bounded domain with C'-smooth boundary I'. We consider the problem:

18



wyt + k1A% + Ko (A?)*w; + N g(Nw) = f
w|r:0

ow

| ="
w(-,0) = wo € Hy(Q), wi(-,0) = 1 € L*(Q)
= (21, ,2,) €Q, t€[0,7],

(z,t) e QA x[0,T] = Qr

O0<a<l.

In this problem A, is the biharmonic operator, A?, where A = Yoy % is the Laplacian,
J

and Ay = (A*)* is a fractional power of the biharmonic operator.

V= ae) = {u & 10 s vl = 5

= 0} , H= LQ(Q)
r
and
V, = HOQQ(Q)

is a fractional Sobolev space which due to the well-known embedding theorems (see, e.g. [WI])
can be described explicitly by:

H*(Q) if0<a<
H2 () = {V e H*(Q): V[r =0} ifir<a<

ENT

o w

{wenQ):vr=2r=0} ifi<a<l

In this example N' € L(Va, H) can be any bounded linear operator mapping Vo = HZ*(Q)
to H=1L1*Q), e.g. if a >1/2 then we can choose N = % form =1, or for m > 1 we can
let N = AP for any 0 < 3 < a < 1. We also assume that f € V; and the nonlinear term g
is a scalar function g : IR — IR such that

5 !
G©) = [ a(r)dr. a(6) = () (75)
satisfies the following conditions:

1. There exist posilive constants C; for 3 =1,2,3 and € > 0 such thal

(1 Ry — P — O < G(E) < Gl + O, (7.6)
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2. There are posilive constants 6}, 7 = 1,2 such that

19(6)] < Crle] + G (7.1

3. We assume that

9'(&) =~k (7.8)

It is easy to see that such a g satisfies A8)-A11) and all the other conditions (A1)-A7) and
A12)) are also satisfied. Thus this system possesses a compact global attractor by Theorem

2.1.

Example 7.2 Let us consider transverse vibrations of a fixed end nonlinear beam of length
1
0 with structural (or square-root, A} ) damping [Ru, BIW]:

Now

and

Wy —I' Wrrre — Wiz —I' g(w) = f
w(t,0) = w(t, ) = wy(t,0) = wy(t,£) =0
w(07 ) = o € Hg(oag)

wi(0,) = ¢y € L2(0,0) (7.9)

V = Hg(0,6) = {¢ € H*(0,0) : $(0) = ¢/(0) = ¢(() = ¢'(¢) = 0}
Vy = Hy(0,0) = {¢ € H'(0,£) : $(0) = 6({) = 0}, (7.10)

<"41997 77Z}>V*,V — <S‘9zav7 ¢zx>

<"42997 77[)>V2*7V2 = <S‘Qr7 ?7/}I>
N=1 (7.11)

Let g satisfy conditions (7.5)-(7.8), and f € L*(0,T;V*). Here assumptions Al1)-A12) are

all satisfied, so by Theorem 2.1 the system possesses a compact global attractor.
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Instead of the structural damping a spatial hysteresis damping [BIW] could also be used
in the above example. In that case Vo = H'(0,) and the damping sesquilinear form can be

given as

(@) = [ o)y (7.12)

v is a symmetric, non-negative kernel in L°°((0,0) x (0,0)). Again if g salisfies conditions
(7.5)-(7.8)and f € L*(0,T;V*) then by Theorem 2.1 the system has a compact global atlrac-

tor.

Example 7.3 Let Q be a smooth bounded domain in IR™. Consider the strongly damped

nonlinear wave equation

wy — aAw; — Aw + g(w) = f (7.13)
w(z,0) = po(x) € Hy(Q), wi(x,0) = pi(z) € L*(N) (7.14)
w(x,t) =0, =€ 0N (7.15)

= (21, ,2,) €Q, t€][0,7T],
(2,0) e 2 x [0, T =Qr, a>0
(7.16)

In this problem
V=V,=H;(Q)

and

A=A, =-A, N=1

We assume that g satisfies (7.5)-(7.8), and f € V*.

We remark that although V is not compactly embedded in Vy in this case, the existence
of a compact global attractor is still qguaranteed. If we examine the arqguments where this
assumplion was used, i.e., Lemma 5.1., we can see thal they are still valid, since N in this
case is continuous from H to H. This results in the continuity of ¥ in Lemma 5.1 from
L with w € C([0,T],H) to V x H and then the following arguments are valid since V is
compactly embedded in H.
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